
NOTATION 

T, characteristic function of a process (temperature, concentration); x, coordinate; 
, d 6 ~i, istance between measurement points~ a, ~, y, transfer constants~ Fo, Fo, Fourier 

numbers; t, T, e, time. 
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THEORY OF A THERMAL DIFFUSION 

APPARATUS WITH TRANSVERSE FLOWS 

A. V. Suvorov and G. D. Rabinovich UDC 621.039.341.6 

The article discusses a continuous thermal diffusion apparatus in which supply 
and removal take place at the ends of the separating slit. The dependence of 
the shift in concentration on the parameters of the apparatus, the properties 
of the mixture, and the amount of fluid removed is determined. 

All known types of thermodiffusion cascades of constant, stepped, or ideal profile are 
characterized by the fact that the mixture being separated moves through elements forming a 
given cascade. The scheme for connecting thermodiffusion columns proposed by Jones and 
Frazier [i, 2] and shown schematically in Fig. la is distinguished by the fact that the mix- 
ture is pumped outside the separating part of the column. As can be seen from the figure, 
the mixture being separated is delivered to the top and bottom ends of the outermost columns 
and moves along the respective ends until it leaves the cascade. A theory of such a cascade 
proposed in [3] was constructed on simplified model representations applying to the separa- 
tion of petroleum products. In connection with the latter, the relations obtained here are 
approximate. 

The present work attempts to avoid the above problems and is based on the use of classi- 
cal theory [4]. 

A battery of columns (Fig. la) may be represented in an idealized variant as a plane 
column, the top and bottom parts of which contain channels 2 (indicated by the dashed line 
in Fig. ib, c) connected with the separating part of the apparatus i. The apparatus is divided 
into a series of narrow columns by vertical barriers 3. It is assumed that diffusion along 
the x axis in these columns may be ignored, which allows us to regard the problem as being 
unidimensional within each column. The same assumption is made with regard to diffusion in 
the top and bottom channels, which is fully justified given the fairly high flow rates typi- 
cal of the chosen operating regime. It is further assumed that the convective flow entering 
the channels 2 from the region 1 is ideally mixed along the z axis with the flows passing 
through the channels. 

In any vertical cross section of the apparatus being examined, transfer in the case of 
a binary mixture is determined by the formula 
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Fig. I. Column-operating schemes: a) with 
transverse flows; b, c) idealized model of 
counterflow and forward flow; d) with central 
feed. 

"~ = Hc(1 --c)-- K dc 
dz (i) 

which, with introduction of the variable 

takes the form 

H z / K  = ] (2) 

(3) 

To obtain meaningful final results, we will limit ourselves to the case of linear 
approximation of the nonlinear term 

c(1-- c) ~ a + bc. (4) 

Since transfer is a constant quantity in the steady state, then, differentiating (3) 
with respect to y, we obtain 

d2c dc 
- -  - - b  = 0 .  ( 5 )  

d f i  dy  

The solution to (5) is 

c = A1 (x) + A2 (X) ebv, (6) 

where the coefficients Az(x), A2(x) depend on x, i.e., on the location of the vertical 
cross section being examined. To find these constants, let us examine a section of the 
column of length dx (see Fig. ib). The object component Tdx/B flowing into the top channel 
from the column is mixed with the flow Oe, increasing the concentration in the channel by 
dc, i.e., when y=ye 

dxl  = d c e .  (7) 
B(Ye fY=Ye 

In the bottom channel (y = 0), the change in the concentration of the object product 

~: dx t --  -T-dc~, (8) 
Ba~ ]v=o 

where the top and bottom signs pertain respectively to the cases of forward flow and counter- 
flow. After the quantity T in Eqs. (7) and (8) is replaced by the value of T from (3), (7) 
and (8) are the boundary conditions for finding AI (x), A2 (x): 
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Fig. 2. Dependence of 
f on the value of Rye: 
I) counterflow; 2) for- 
ward flow; 3) central 
feed. 

where 

On the other hand, from (6) 

dc I 1 ( d e )  - -- a + b c - -  , 
dx V=Ve Bxe dy Y=Ye 

= -T- a + bc - -  , 
dx ~ v=o 

• = ~/H. 

(9) 

(io) 

Substituting Eqs. (6) 
ing the sought quantities: 

d--~-c I = A~ (x) + As (x) e bye, 
dx [y:ye ', 

dd;'lv:o = Ai(x) + A'2 (x). 

and (ii) 

( l l )  

into (9), we obtain two differential equations for find- 

A I (x) + A~ (x) e by~ = l__J_ [a + bA~ (x)l, 
B•  

1 
A; (x) + A~ (x) --- -T- ~ [a + bA~ (x)l. 

Forward Flow. Simultaneous solution of (12) yields 

(12)  

A1 (~) = Cle-mp ~ __ a__a__ b 

where 

A~ (~) = CI ( , b 1) e -~~ -[- C2, 
• 

(13) 

x b exp (bye) + •215 
~ - -  B ' qop = • e x ' a ' " e  x - ' t ' w v f ,  (14)  

with C~ and C2 being integration constants. 

Substituting the corresponding values from (13) into (6), we obtain 

~q~p b ' 

ci = C1 ~ e :~p~ - -  ~ + C~. 
xiCPp b 

(15) 

(16) 

To find the constants CI and C2, we take into consideration that Ce=Co and c i=co 
with forward flow at the origin, i.e., when ~=0. Using these boundary conditions, we 
obtain the following dependences on the dimensionless coordinate ~ for the change in concen- 
tration of the top and bottom flows: 
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=[ (1 ce Co e -%~ + + 

X e ~r 

(17) 

Counterflow. 

where 

(eVU~--1) e-%~+ (1-t- -~-) 
C i = C 0 

a (e b u ~ -  1)(1--e-%~) 
ebYe@ Xi b ebYe@ ~i 

~e Ne 

In this case, after solving (12) and substituting into (6) 

[( ) J o b 1 e%~-kD~, e b u ~ -  c~= Dle ~ - k  D1 %• b ' 

ci = D1 b . e ~ _ .  a + Dz, 
%•  b 

(18) 

(19) 

(2o) 

by e ~ i 
e - -  

b •  
q ) r  - -  _ _  

~ i  e bye - -  1 

Since the feed flows are entering from opposite ends of the apparatus, to find the 

constants DI, D2 we should use the condition Cel~= o =Co, 

• (ebbs__ 1)e~ ~ + e byo. e ~  . . . . .  
Ne 

Ce = C 0 
ebYe+~c _ _  . ~i b ebYe+~e__7 __~ 

~e ~e 

x e a 
C i = C 0 

ebyb+(~c__ Xi b ebYeW~c ~i 

Xe ~e 

ci I~=I =co,  which gives 

a (e bu~-  1)(e ~ -  e%i), 

a (e bye -- 1) (e ~e -- e w~) 

The special case corresponding to values of a =0 and b=l in Eqs. (17), (18), (22), 

and (23) was examined in [5]. It should be stipulated that all of the formulas presented 
above are valid only when~i > 0 and ~e > 0, since only then will condition (9) remain in 
force. 

As can be seen from (14), (17), (18), and (21)-(23), the concentrations at the outlet 
of the apparatus are functions of the three parameters ~i, ~i/%e, and Ye. To simplify 
analysis of the results obtained, we will examine the case where b = 0. In accordance with 
(4), this case corresponds to the value c(l -- c) ~1/4. 

It can then be shown that with forward flow 

(cek - -  cih)v = y~ (1 - -  e - % ) ,  % =  
4 " 

Xe 

~4 i~e 

while with counterflow 

(21) 

(22) 

(23) 

(24) 

e~c_  ~i ~iYe 
~e 

To evaluate the efficiency of each variant of moving the transverse flows with respect 
to one another, it is expedient to use the quantity 

f__ 4(Cek--Cih) , (26) 
Ye 
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where Ye/4 is the shift in concentration in the column being operated without removal of 
fluid [$]. The results of such a comparison, when ~e =~i, are shown in Fig. 2. It is 
apparent from the figure that, in the region of values ~Ye < 1.6, the counterflow is not 
only greater than the forward flow, but it makes it possible to obtain an increment in 
concentration which is almost double the increment obtainable by the column in the no- 
removal regime. A further comparison was made for a centrally fed column (Fig. id) in which 

• 2 "" (27)  

Curve 3 i n  F i g .  2 shows t h a t  the  c e n t r a l - f e e d  scheme i s  abou t  as e f f i c i e n t  as f o r w a r d  
flow (Fig. ic). 

The formulas presented above were analyzed in connection with schemes b and c in Fig. 
i, corresponding to operation of the apparatus on the principle of ideal displacement. In 
practice, when the apparatus consists of a series of separate columns (Fig. la), each having 
top and bottom parts containing small tanks, the contents of which may be mixed with the flow 
entering from the separating part, then there will not be a concentration gradient in each 
of the tanks along the direction of motion of the flows ~e and oi" Examining this scheme, 
we assume that the perimeter of all of the columns B are the same in magnitude and we limit 

ourselves to the case where c(l -- c) ~const =a. A change in concentration in the top of 
the n-th column is equal to the difference between the concentration Cen at which the flow 

Oe leaves the n-th column and the concentration Cen-i at which it enters from the (n -- l)- 
st column, i.e., Cen -- Cen_ i. This increment in concentration is due to the entry from 
the separating part of the flow defined by (3), i.e., with allowance for the chosen approxi- 
mation 

a - -  ( dc~ 1 = *e (Ce,n - -  Cen--,). (28) 
\ dy /y=v~ 

If the flow ~i in the bottom of the apparatus is sent in the same direction as the flow 
Je (forward flow), then, by analogy with (28), 

c, 
y=O 

I n  t h e  c a s e  o f  c o u n t e r f l o w ,  i n s t e a d  o f  ( 29 )  we h a v e  

\ @ Iv=0 
Since the flow (3) is constant in any cross section of the column in the steady state, 
(dcn/dy)y=y e= (dcn/dy)y=o =dcn/dy. Then, integrating (28)-(30) with respect to y and keep- 
ing in mind that Cn]y=ye=Cen , CnIy= o =Cin , 

c ~  - -  c ~  = a v e - -  • ( c ~  - -  c ~ _ , ) ,  

c ~  - - c ~  = ay~ - -  • ( c ~ - 1  - -  c M ,  

c~,~ - -  ci~ = ave - -  • (c~+~ - -  c~) .  

(31) 

(32) 

(33) 

The single quote mark in the above equations indicates that the value of H in (i0) is taken 
for a single column. Having determined Cen -- cen-1 from (31) and Cin_1 -- Cin from (32) 
and having added the left and right sides of the resulting expressions, we find the relation- 
ship between the difference in the concentrations at the inlet and outlet of the n-th column: 

u Ye 
Cer~ - -  Cin = aye - -  + - -  (Cen--1 - -  Cin--l), (34) 

y ~ + u  y ~ + u  

where 

1 1 
u ---- .- + , . (35) 

It is obvious that for the first column Cen_1 =Cin-1 =Co, so that 

U 
G1 -- cll = aye (36) 

y ~ + u  
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Substituting (36) into (34), we obtain an expression for Ce2 -- ci2. Using this 
expression, we find Cea -- ci3, etc. As a result, for the difference CeN -- CiN, where N 
is the total number of columns in the apparatus, we obtain a geometric progression. Finally, 

for the sought difference in concentrations, we find 

C e N - - C i N = a y e [ 1 - -  ( Y ~ e  ) N] . (37) 
u + v O  

With N§ the fraction in the brackets vanishes and we obtain the result for a column 
from which no fluid is being removed. The values of CeN and CiN can be found from the 

balance equation 

~e (Ce~ - -  Co) = ,~ (Co - CeN). (38) 

In the case of counterflow from (32) 

Using the balance equation 

and (33), instead of (34) 

u Ye 
Cen --tin = a y  e - -  -{- - -  (Cen--I -~- Cin+ l ). (39) 

u + Ye u + Ye 

and substituting 
transformations we obtain 

g 

CeN - -  CO + ~ a ~  

1 + • 

the value of Cin determined from this equation into 

(4o) 

(39), after simple 

+ ~ 1 + ~ve  (c~,~ - Co) = (Ce~--~--Co). 
(41) 

With n = 1 and cen-1 = co, the right side of the last equation vanishes and gives the follow- 

ing relation for the first column 

Ce~--~0 +~7~Ye < I + ~;Ve 
~- - -  (cel  - -  Co) = O, ( 4  2 )  

1 + • ~ 1 + • 

while for the second column 
r 

8 
CeN --C O @ ~ aye 

1 + • 
+ (Ce2 - -  co) = Cel - -  co. (43) 

The expressions for columns 3, 4,...N will be similar. Inserting the value of Cel -- 
Co from (43) into (42) and then successively replacing Ce2 -- co from Eq. (41) for the 
third column, etc., we obtain a geometric progression, the sum of which, after the appropri- 
ate transformations, gives the following for N columns 

I - I• (1 +x~)/~(1 + xiyO] N 
CeN - -  CO = aye (•215 __ [• (1 Jr •215 (1 @- • N " (44) 

! t = M y  WithM e =M i , from (44) we have 

N 
CeN -- Co = aye (45) 

1 + •  N 

The increase in the concentration of the object product with an increase in the number 
! T 

of columns will vary, depending on the relationship between M i and Me. This becomes appar- 
ent if we set N§ 

t 
(CeN- C0)•215 = aye--~, (ten --CO)x;>• = aye, (46) 

i.e., in the second case, the increase in concentration at the positive end of the appara- 
tus will be higher. This has been confirmed by experimental data [6]. It is interesting 
to note that in the approximation being examined (b=0), Eq. (22) -- with allowance for (21) -- 
takes the following form at ~ = i 
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Ceh --C O = ay e . . . .  , 
(47) 

and in the case of large B degenerates into the relation 

( c e k -  C o ) B ~  = aye • , ( c e h - - C o ) B ~  = aye, (48) 
~i <~e ~e ~i>Xe 

Comparison of Eq. (48) with (46) shows that operation of the apparatus according to the 
ideal-displacement scheme is more efficient at oi > Oe and that (46) and (48) give the same 
result only when ~i =Re. It can be shown that when large amounts of fluid are removed and 
Ye ~ i, nearly the same results as in the scheme in Fig. ic are achieved with as low a number 
of columns N~ 5 if they are connected in accordance with the countercurrent scheme in Fig. 
la. 

NOTATION 

B, column perimeter; c, concentration; D, diffusion coefficient; H=aTp2gB~3(AT) 2B/6!~T; 
K= g2p~B267(AT) 2B/9!n2D; L, column height; y, dimensionless coordinate; eT, thermodiffusion 
constant; B, coefficient of cubical expansion; ~, gap in the column; ~, dimensionless removal 
rate~ q, viscosity; %, thermal conductivity; o, removal rate. Indices: c, countercurrent; 
e, positive end of column; i, negative; n, column number; p, forward flow. 
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